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A transition state real wave packet approach for obtaining the cumulative
reaction probability
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We show how the transition state wave packet method of Zhang and Light can be applied within a
real wave packet formalism. We also implement random superpositions into the approach, as in the
recent work of Matzkies and Manthe, which can significantly reduce the number of propagations at
higher temperatures. The net result is a very efficient approach for calculating the cumulative
reaction probability, and hence the thermal rate constant, for bimolecular chemical reactions. Full
dimensional quantum calculations, including all relevant total angular momenta, of the cumulative
reaction probability and thermal rate constant for the H—HD+H are used as illustration.
[S0021-960600)01205-9

I. INTRODUCTION volves a sum over transition state wave packet contributions
and, depending on the nature of the potential surface, fewer
transition state wave packets than number of terms on the
right-hand side of Eq(1) might be needed. However, even if

ﬁ r?ﬁari vSeroytht:asrel;zlséc;?IChlgr;:hﬁ?g:a;;iacgﬁne;atce rt:el(;?"this is not the case, the use of discrete variable representa-
u u v utilized cumuialiVg,,s (DVRs),28-2! and absorbing boundary conditions

reaction pr??f}b""y ideas to obtain accu?gl‘é and (ABC),?22 can still yield considerable computational sav-
approximaté&*~1’theoretical approaches to chemical reactlonin s in relation to initial state selected wave padkSSWP
rates. For a bimolecular chemical reaction, the cumulative 9 : b o Y
; - . . propagation approaches. Of course, such “DVR-ABC
reaction probability as a function of total enerdy(E), is i led with i i laeb thod
defined to be the sum of all possible reactive quantum trans ca=r COUPIEC WIth sparse mafrix finear ajgebra methods,
sition probabilitiesP (E) allow one to compute N(E) efficiently with time-
M Mgt =2 independent methods as w&lf There tends to be a blurring
of the distinction between time-dependent and time-
N(E)= nzn Pn, 'np(E)' @ independent methodologies when common strategies and nu-
P merical techniques are employ&iThis will also be illus-
wheren, andn,, denote sets of reactant and product quantunrated in the present work.

The cumulative reaction probability, especially through
the work of Miller and co-workers;® has been established

numbers. The bimolecular thermal rate constiefi) is a The TSWP method, in its most straightforward form,
Boltzmann average dfi(E), involves propagation of complex valued wave packets. Most
1 time-independent approachesN@E) make use of complex
k(T)= Wf dEe F*TN(E), (2 Green'’s functions or optical potentials and therefore also in-

volve complex vectors. We show here, however, that it is
whereQ, denotes the partition function of the reactants. Thepossible to propagate just the real part of complex wave
main idea is to find more efficient or direct approaches topackets, and from just the real part infer all the relevant
computingN(E) than the explicit sum over all the allowed information for construction ofN(E). This can halve the

state-to-state transitions indicated in Ed). In particular, amount of computer time and memory required to obtain
much progress has been made using the following, alternaN(E) in relation to the straightforward approach. This rep-
tive definition for N(E) due to Miller, Schwartz, and resents an application of the “real wave packet” formalism

Tromp’: outlined by Gray and Balint-Kurfi? which also makes use of
(27h)? the fact, pointed out by Meijeet al,?® that reactive fluxes
N(E)= > tr[ S(E—H)FS(E—H)F], (3) can be inferred from real wave packet propagation. Addi-

tional savings, particularly for high temperatures where

whereH is the Hamiltonian operator arfélis a flux operator ~many transition state wave packets are required to converge
consistent with a surface separating reactant and product réate constants, is provided by adopting statistical initial con-

gions. dition sampling methods as in the work of Matzkies and
The transition state wave pack@tSWP method, intro- Manthe®®
duced by Zhang and LigHt%is a physically appealing, Section Il outlines our approach t(E), Sec. Il pre-

time-dependent approach to calculatiNngE). It involves  sents and discusses a full dimensional determinatidy( &)
propagating a set of wave packets localized in a transitiomnd k(T) for the D+H,—HD+H reaction, and Sec. IV
state region. The corresponding expression F{E) in- concludes.
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Il. TRANSITION STATE REAL WAVE PACKET product coordinate regions. The time stepurns out to be
(TS-RWP) APPROACH arbitrary and cancels out of any expression for a reaction
robability. Equation(8) is the same damped Chebyshev it-
ration as introduced in the time-independent work of Man-
elshtam and Tayld® See also the time-independent wave
packet ideas of Kouri and co-workeéts.The real wave
packet approach, as it applies to Ef), can therefore be also
viewed as a variation on these time-independent approaches
A. Real wave packet formalism that applies standard wave packet initial conditions and
analysis methods to the Chebyshev iterates.

Note if the initial conditiong(t=0) is complex, there is
no difficulty in applying the formalismi*3° Equation(8) re-
quires knowledge ofy® and q'*) to be initiated. 1fq(®
=Reg(t=0) and p(@=Im ¢(t=0), q*) is obtained from

Section Il A outlines the necessary aspects of the reai
wave packet formalisrff+?® Section Il B shows how one can d
then apply Zhang and Light's TSWP approdc Section
Il C discusses aspects of TSWP initial state selection, includ
ing the idea of random superpositiots.

Two observations in Ref. 24 wer@) it is possible to
infer reaction probabilities from just the real part of an evolv-
ing wave packet, andi) the wave packet can be generated
from a modified time-dependent Schinger equation with

the Hamiltonian operatoH replaced byf(H), where the _ ©)_ 112 n(0)
functional form off(H) is chosen for conveniencéf(H) g"=Hsq™—y1—H; p™, where the act of the square root

© i
should, of course, be a Hermitian operator and in order fopperator onp™ can be evaluated with, e.g., a Chebyshev

one to focus on just the real part of a wave packet one mu&xpans!on.(Typlca;]ll?/ the:\[hreqijr:red nutr)nberf '(t)f te::ms n th_e d
have a real symmetric matrix representationftet).] expansion is much less than the number of iterations require

C to compute observablgs.
Let $(1)=h(x.t) be a(complex wave packet satisfying A r?ew aspect of ?he present work is the necessity to

. d B propagate backward in time. This is accomplished through
'ﬁﬁ‘b(t)_f(H)d’(t)' (4) the following backward Chebyshev iteration,
Let fe=f(E) denote the eigenvalues é{H). Energy (or gk V=Al-Agk D+ 2HqM], 9
equivalentlyfg) resolved observables may be estimated withyhere nowk=—1.—2.... Inthis case one needs® and
the aid of integrals of the form gV to initiate the iteration with qCY=H.q©®

to +J1-H:p.
I(fE):J dte"e" (). (5
For example, the coordinat®) dependence of such integrals B. Transition state wave packets
can be used with flux approaches to calculate energy re- Zhang and Light, starting from Eq.(3), arrived at an
solved reaction probabiliti€s. If one can assumé(fg) is  expression folN(E) involving a sum over transition state
one-sided infg, i.e., there is no amplitude for eithég>0  wave packe{TSWP contributions,
or fg<0, then it is easy to shoW(fg) may also be obtained
from just the real part ofp(t), q(t)=Red(t), according N(E)=E N;(E), (10
t024’25 i
with

N;i(E)=(4i(E)[Fs |ti(E)), 11

The one-sided condition is not difficult to satisfy. For ex- where the flux operatdfs  can be written in terms of some
ample, with the Chebyshev iteratiSrvariation of the real  appropriate coordinateand its associated momentum opera-
wave packet ideésee below it is automatically satisfieé tor ps as

If one choosed$(H)=H, i.e., considers the usual Schro 1
dinger equation, an efficient scheme for optalnlng just the [ 8(S—So)Pst Psd(S—S0)]. (12)
real part of the wave packet has been previously outlfed, 2 s

and this could be used if desired. Conceptually, this is therhe conditions=s, is assumed to define a surface separat-
S|mplesfc approach. However, we believe a more efficient aPhg reactant and product regions of space. The energy re-
proach is to assume solved TSWPs are given by

f(H)= — " arccogH,). 0 Yi(E)=27h N S(E—H) §;(1=0)
.

I(fE)ZZJj:dte”E“ﬁq(t). (6)

SO_

+ o

whereH,=ag H+bs is a scaled Hamiltonian operatéor = \/Xf dteE (1), (13
matrix in applicationswhich has eigenvalues withjr-1,1], o
coupled with a relatively stable form of absorptit’ This ~ where ¢;(t) = exp(—iHt/4)¢(t=0) and\ is the positive ei-
results inqg satisfying a simple recursion, genvalue of the flux operatgsee Sec. || € Notice that both

Kil) K1 K forward and backward propagations of the initial condition

qU=AT-AGH D+ 2HgW, ®) ¢;(t=0) are required to evaluate E@.3).

with k=1,2,... denoting the discrete time stepskr and The simplest way to obtain the corresponding real wave
whereA denotes a suitable rule for absorption in reactant angbacket interpretation involves setting
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dfe tribution of asymptotic reactant states, one chooses instead
SE-H)=|g4g|dfe—T(H)], (14 from a set of states localized in a transition state region.
Formally, we can think of a conditios=s;5 on some suit-
which allows us to replace E13) with able reaction coordinate as defining the effective transition
dfe state region. It is important to note that the surface defined
Ui(E)=27h qE \/Xé[fE—f(H)]gbi(t:O) by s=srg need not be the same as the surfage ;) used
for cagrying out the flux analysis to obtain the various
df too N;(E).
=‘d—EE VN f _dtelEg(), (15) The initial TSWPs,é,(t=0), are defined as
where now ¢, (t) =exp(—if (H)t/4) ¢(t=0) is a solution of ¢i(x,t=0)=x(s) 7 (u), (19
Eq. (4). where we divide the coordinatesinto the assumed transi-
Using Eq.(15), each TSWP contribution, E411), can tion state coordinate and the remaining degrees of freedom
be written as u. x(s) is the eigenfunction of a flux operatoF_|x)
N |dfg|? o =\|x), for which A\>0. Within a finite basis or grid repre-
Ni(E)= | dE |m< f_ e g (1) dt sentationy(s) will be strongly peaked &= ss. [Note that
s the simple one-dimensional flux operator we use, @),
o P when diagonalized in anbasis, leads to just two nonzero
xf eifEt’/ﬁ_¢i(t')dt'> , (16) eigenvaluesh and —\, with all other eigenvalues being
- s s=s, zero. Other forms for the flux operator may have more non-

zero eigenvalues than this39 The set of internal functions
Eq. (12). All quantities within the inner product are fixed on E]Zit(eus)irrrhlgsg; O%rglvge :nc(;o(r;rg;leéz cj/?;fartlglrﬁ?ogﬂt:ﬁ g%%rg_l_
the surface defined bg=s, and the inner product is an g,ncfions of some appropriate reduced Hamiltonian model
integration over the remaining spatial variables. (see, e.g., Sec. llIB Of course, one can vary the choice of

. The subsquent analysis then parallels the developme%s with the hope of finding a value such that the total num-
in Ref. 25.' If NSt the real part .Of e_ach TSWi (1) ber of available internal states less than some maximum en-
=Re (), is available, then Eq(6) implies that Eq.(16) ergy is a minimum. For reactions with tight transition states

where we have also used the definition of the flux operato

becomes or high barriers, this number of states could be less than the
ANFL |dfg|? *o total number of ISSWPs one would have to propagate to
Ni(E)= e | dE |m<f e''e g (t)dt evaluate Eq(1).”
s - The simplest approach to the evaluation of E@) is to
o P systematically progress through the initial TSWPs given
xf eifEt’/ﬁ_qi(t')dt'> . (17) above, withi=1,..., M, with i increasing such that the;
- S s=s, correspond to ever higher energy internal states and to stop

at someM when convergence is achieved. An alternative is
to use statistical sampling as in the work of Matzkies and
Manthe!? (See also related work by Jeffrey and Sniithin

the present context the idea is as follows. Equatibd) is
replaced by the average ovls or number of random su-

Assumingf(H) is given by Eq.(7), which implies theg;(t)
are generated by the Chebyshev iterations(Bg.leads to

anazh® c
Ni(E)=——— Im( > ¢'%kq{
/'Ls(l_Es) k=—x

perpositions
*© 9 - 1 Nrs -
iogk’ 7 (K" N E)= — N (E), 20
Xkrgme E 5 di > , (18) avg( ) Nrs kgl k( ) ( )
S=8§
° where

wherefg= —arccosEs), Es=asE+bg. Equation(18) is the -

main equation used in our calculation{E). It is possible Nk(E):m(E)|FSOM(E)>, (21

to obtain similar(but not exactly the samexpressions via .

Chebyshev expansion of th E—H) terms inN(E). This  with each(E) being an energy resolved state determined
is perhaps more in the spirit of the time-independent wavésia Fourier transformation of a time-dependent statét) in
packet idea®?° and we outline this approach, as well as aa manner analogous to E4L3) or Eq. (15). However, the
cpnnection with real wave packet propagation, in the Appe”t:orresponding initial conditiorb, (t=0) is given by a ran-
dix. dom superposition ol TSWPs,

M
C. Initial conditions and sampling '(7)1(»[:0): 2 (— 1)a:<¢i(t:0)1 (22)
i=1

The TSWP method differs from standard initial state se-
lected wave packeflSSWP propagation schemes in the with the «f being a random sequence of 0's and 1’s.
choice of initial conditions. Instead of sampling from a dis- Equation(21) becomes
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TABLE I. Grid and related parameters for the three-dimension&Hp

~ k k
Ny= IEJ (=D (=1)“{yy Fs0| ;). (23)  calculations.
. Parameter 30-4 JF5-25
The relatiod®
N H, distanceyr /a, 0.5-55 0.5-75
) 1 5 K K Number of grid points irr 25 37
gij= Iim N (=D (=1)%, (24 Distance between D and the center of,HR /a, 0-5 0-7
Npg—oe rs k=1 Number of grid points irR 27 37
~ L Number of(even diatomic rotational stateg, 16 16
transformsN,s in the limit of a large number of random pgtential and centrifugal cutoffs/, /eV 6 6
superpositions, intdl(E), Coriolis cutoff/eV 3 3
M Absorption in R starts aR, / ag 3.0 4.0
.~ Absorption in r starts at, / a, 3.0 4.0
lim NadE)= Z (Wil F30| #)=N(E). (25 Absorption strength in Rer/ag 0.01 0.01
Nrs— =1 Absorption strength in r(;r/ag2 0.01 0.01
Flux analysis pointry/ag 3.0 4.0

M, the total number of transition state wave packets em-
ployed in the random superpositions, depends on the ener-
getic range of interest. Ideally, in certain situatidih&) can

be estimated to some desired accuracy by propagating
<M random superpositions. the case that if there is an odd numbeKbftates the parity

p=0 (even and if there are an even number @f states the
parity p=1 (odd).**
The Hamiltonian operatdd may be written formally as
| . I Vi
To illustrate the methodology of Sec. Il, we obtain the H=—+ + +
cumulative reaction probability and bimolecular rate con- 2pr 2mr 2ugR? 2t
stant for the D-H,— HD+H reaction, in three dimensions, (27
including all relevant angular momenta. The Liu-Siegban-whereug=mp2my/(mp+2my), u,=my/2, P andp, are
Truhlar-Horowitz (LSTH) potential energy surfad&=°is  appropriate radial momentum operators associated Rith
employed. This application was chosen so that we can theandr, andJ andj denote thgvectop total angular momen-
compare to the accurate and extensive results of Mielkeum and H angular momentum operators.
et al® The forward and backward propagations with E@.
and(9), for practical purposes, amount to updating the chan-
nel coefficientsCf;B(R,r,t). This involves, per step, one act
In our calculations, we represent the wave packet an@f H on a real vectog”P. As in previous work®4° Hg”:P
Hamiltonian in terms of reactant Jacobi coordinat®sthe  preaks down into three parts. First, one has the diagamal
distance from D to the ficenter of mass;, the H; internu-  and () contributions from the kinetic energy: the actions of
clear distance; and cas the cosine of the angle between the radial kinetic operator‘BZR/Z,uR and pr2/2,“r on the chan-
vectors associated witR andr. A body-fixed(BF)****°rep-  nel coefficients, as well as multiplication by the centrifugal
resentation is employed which introduc@s the projection  terms that result from the angular kinetic energy operators.
of total angular momentum on tHe axis. Without external  Second, one has Coriolis coupling terms, resulting from the
forces there are three conserved quantum numbers: the tof@—j)2 term in Eq.(27), which coupleQ to Q1. Third,
angular momentum quantum numkkithe projection quan- one has the action of the potential, which is diagonafin
tum number for total angular momentum on a space-fixedut off-diagonal inj. The relevant equations may be found in
(SP z-axis M, and the parity quantum number(0 or 1).  numerous references, including Refs. 39 and 40. We use
Because the results are independentvbfve suppress ex- evenly spaced grids iR, andr, coupled with fast Fourier
plicit reference to this quantum number in what follows. sine transformations to evaluate the radial kinetic energy
Within the BF representation, a wave packet or its real @art terms. Rather than store large matrices of the potential in
may then be expanded’ag° terms of the relevant associated Legendre basis functions, we
simply carry out, for eaclf), j, R, andr, a transformation
from the associated Legendre basis to a Gauss-Legendre

IIl. APPLICATION TO D +H,

2+V(R,I’,COS)/),

A. Representation

q”P(R,r,cosy,t; @)

J o dmax 5 5 quadratur&' in terms of cosy grid points, multiply the result
:QEQ EQ Cib(Rr, )G h(cosy;a), (26) by the actual potential values on the grid points, and trans-
=min 1=

form back to the associated Legendre b3bis.

where theGJ-J;B are parity adapted angular functions that in- Table 1 lists the grid and basis set details associated with
volve associated Legendre polynomials in gaand Wigner  our propagations. The grid details change with increading
matrices in three Euler anglédenoted collectively ag), as  owing to the increased importance of long range effects. We
in Refs. 39 and 40 ,,i, in Eq. (26) can be either 0, in which found that larger grids were necessary at the intermediate to
case there ard+1 coupled() states, or 1, in which case higherJ values to minimize artificial reflection effects. The
there areJ coupled() states. The two possible choices for absorption parameters in Table | correspond to damping the
Qmin determine the two different parity cases, with it being channel packets according A(R,r)=Ag(R)A,(r) (for all
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Q andj), with A,=exd —c,(x—x,)?] wheneverx>x, with that leads to the lowest number of TSWPs with internal en-

X=R orr. Energetic cutoffs were also introduced, which ergies(i.e., eigenvalues of the reduced dimensional Hamil-
reduce the spectral range of the Hamiltonian and therefortonian less than some maximu. Typically, we findrg
reduce the number of iterations requifédVote that we ap- ~2.4 a,, which is slightly larger than the actual collinear
ply an energetic cutoff not only to the potential energy, buttransition state value of 1.78,. For J=0,1,...,10 andR
also to the centrifugal terms and the magnitude of Coriolisyrid sizes of 27-37, corresponding to reduced dimension

coupling terms. The latter terms tend-to© asR tends t0 0. Hamiltonian matrices ranging in size from 432 to 5402, we
(Care must be taken to ensure the magnitude of the cutoff issaq 5 direct diagonalization proceduréhe Jacobi

sufficient so that no imbalance between the centrifugal anﬂ1 45
e ethod.
Coriolis terms results.
For eachJ>0 considered, we carry out calculations for

However, for larged it becomes computationally
prohibitive to diagonalize the matrices directly and so we

both parity cases, corresponding to whether or @et0 is u_sed an iterative matrix eigenvalue method to obtain_just th_e
included in the basis, as discussed below @6). In fact, it elge_nvalues and e|genvectors_ of r_el_evance. The particular it-
is important to note that there can be relatively large differ-erative method used was the implicitly restarted Landzos
ences in the reactivity associated with different parities, evefinore generally Aroldi method;® for which there is very
for J as high as)=20, with it generally being the case that robust, freely available softwaf@é.
the parity such thaf2=0 is included in the basis yields a We propagate the real pad, of each initial TSWRor
higher cumulative reaction probability. In addition to parity, each random superposition of TSWHerward and back-
the hydrogen atom exchange symmetry allows one to deward according to Eqg8) and (9). After each propagation
couplej=0, 2, 4,... and=1, 3, 5,... cases, which also (or iteration step, ther =r, portions ofq and its derivative
correspond to the nuclear para and ortho states, respectivelyith respect ta, 9q/ar, are written to files for later analysis
(Note that it is st.ralghtforward 'Fo reduce sm”arly the num-ih Eq. (18). We employ an analysis surface condition
ber of angular grid points used in the evaluation of the action_ =~ _ ;= hich is different from. and toward the prod-
of the potential ifj is restricted to be even or od8. While fo=3-4a,, which is e P
the results are sensitive to the overall parity, it has beelli'ct side of the condition W_e l,JS,e to define the TSWPs,
previously demonstratéfl that cumulative reaction prob- — s~ 2.4d9. Note that the individuaN;(E) do depend on
abilities (and rate constant$or D + H,, associated with only the analysis surface position, with only their sSU{(E), if it
ortho and only para states are equivalent to within a fewS converged, being invariant to any surface that separates
percent, so we restrict attention to the eydparag case. reactants from products.

For our main calculations, with the grid, absorption, and
B. Determination of the initial TSWPs and other parameters listed in. Table I, 400 forward an.d 400 back-
propagation ward iteration steps suffice to conver§E), or its total
angular momentum resolved variants, to within a few per-

Il C to be simply the H internuclear distance, for which a cent. However, a difficulty arises in the deep tunneling limit

moderately large value can be taken to be the condition foyvhere N(E) .bet?olmes equnentlally small with decreasing
dividing reactants and products. The remaining variafles ©NergyE. This difficulty, which becomes apparent fN(E)
cosy, and the Euler anglea or, effectively, the set of al- with magnitudes< 102, cannot even be seen on the scale of
lowed () values for eac, constitute the remaining variables the N(E) figures we subsequently present. However, this
u. Of course other choices ferandu, based, e.g., on certain deep tunneling limit is important in the estimation of-Bl,
rotations of the original reactant Jacobi coordinates, might beate constants witi=<300 K. In principle, much longer time
bettef both in terms of minimizing the total number of (or iteration and distance scales than those used in our main
TSWPs and in terms of minimizing the size of the grid rep-calculations become necessary and, furthermore, one must
resentation. carefully experiment with absorption. Due to imperfections
With s=r, F,_is easily diagonalized numerically in @ i the absorption, and with our current grid parameters, for
basis of a one-dimensional particle in a box wave functionsexample, negativél(E) values can even result. In our cal-
and the relevant eigenvectgr(s=r) associated with the cjations we simply omit any negativé(E) values from our
pos.|t|vet elgenvalga>0 OfFrTS IS obtameq. This eigenvec- rate constant estimations. Of course, two more acceptable
tor is highly localized orr =rrs and contains a broad range jjtermatives arefi) to separately treat the lo or T aspect
of ener.g|es:(Note. that the flux opgrator has_ SOME CUTOUS ¢ 10 problem with more extensive calculationsioy to fit
properties, including the fact that increases in magnitude each calculatedN(E) just above the deep tunneling limit

as the basis set increazéd** h wiical t fing f la that exhibit
With U= (R, cosy, {0}, the internal statesy(u) of ~ With an analytical tunneling formula that exhibits more cor-

Sec. IIC are then simply the eigenstates of the appropriaté€Ct Pehavior for loweE. None of these alternatives is par-
reduced dimensional Hamiltonian operator obtained by holdticularly appealing and the difficulty in describing the deep
ing r=rg in Eq. (27) and omitting the associateof/2u, tunneling limit must be considered a negative aspect of both
kinetic energy term. IE represents the largest total energy of our approach and, we suspect, most DVR-ABC approaches
interest, determined by the largest temperafuaf interest,  that rely on compact grids coupled with absorption bound-
the optimum value of the reaction coordinatgd) is the one  aries.

For simplicity, we take the reaction coordinaef Sec.
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FIG. 2. The &6 cumulative reaction probability for Bpara-H (including
both overall parities calculated via the TS-RWP approach with various
numbers M, of TSWPs. The GNVP results of Mielket al. (Ref. 37 are
also shown for comparison.

FIG. 1. The &0 cumulative reaction probability for Bpara-H calculated
with standard ISSWP approackolid curve and TS-RWHR(solid circles.

C. Results
how the TS-RWP results converge as the number of TSWPs

propagated, in order of increasing internal energy, is in-
creased fronM=4 to 80(i.e., 2 to 40 propagations for each

The thermal rate constant E@) can also be written as

k(T)=§ (23+1)ky(T), (28)  even and odd parity caseNote that this]=6 case involves
considerably more TSWPs than the correspondin@ case.
where This is because the energy range considered is gréhir
1 compared to 1.1 eMand the density of states increases dra-
ky(T)= WJ dEN;(E)e #E, (290  matically as one increases energy. The agreement in Fig. 2 is
r

quite good and can be improved at higher total energies by
andN;(E) denotes the cumulative reaction probability deter-including more wave packets. However, for the temperature
mined from a calculation with a specifit We first investi-  range considered in the calculations of thermal rate constants
gate selected cases. Figure 1 illustrates the cumulative re-reported below, the energy range spanned by the first 40
action probability forJ=0. The solid points represent the transition state wave packets is probably sufficient.

TS-RWP method of Sec. Il and the curve represents a direct We next consider varioud selected thermal rate con-
determination of the paré.e., evenj) contribution to the stants as defined in E¢R9). Recall(Sec. Ill A) that all our
cumulative reaction probabilitjEq. (1)] using a more stan- calculations were for only the para contribution to the cumu-
dard, initial state selected wave packK&SWP method. The lative reaction probability and, owing to the very similar re-
latter calculations were performed with larger grids and thesults previously obtained for ortho and para contributigns,
flux based approach of Ref. 25. The TS-RWP results are fowe approximateNJ™(E)~N5*qE), so thatNJ(E)zNgJara

six wave packets. The ISSWP calculations required propa+3Np,~4N;.,in the evaluation ok’(T). Figure 3 con-
gating the seven lowest initial rovibrational states of, H trasts our TS-RWP(symbolg results with the accurate
with the total number of allowed initial states with energy GNVP results(curves of Mielke et al’ for J=0, 3 and 6.

less than 1.1 eV being 10. Thus, in this case the number dDne sees, in general, reasonably good agreement between the
TSWPs was not significantly fewer than the number oftwo calculations on the scale of the figure. He#500 K, the
ISSWPs required to obtain a reasonalil&). However, the differences between the two calculations for all thiemses
ISSWP calculation involved 12R grid points, 95r grid  range between 0 and 3%. For the lowest temperature consid-
points, and 16y grid points. Comparing to the parameters ered, however, oud=0 result is more significantly in error
listed in Table I, this translates into a factor of 16 computa-by 14%. This error is, in fact, on the order of the contribution
tional savings with the TS-RWP approach. Naturally, somdo the rate constant from the deep tunneling limit, and re-
additional effort could be invested in optimizing the grid andflects the convergence difficulties noted in the last paragraph
other features of the ISSWP calculations and so this is probsf Sec. Il B.

ably a somewhat optimistic estimate. Nonetheless, individual We now investigate the use of,; random superposi-
TSWP propagations with our approach can be quite efficientjons of the 40 most energetically important TSWRse
particularly for low J. For example, a singld=0 TSWP  Sec. 11 Q. Our focus will be on thel specific rate constants
requires just 2 CPU minutes to be completely propagated ok; of Eq. (29). Figure 4 displays how the rate constant con-
a 200 MHz IBM RS/6000 workstation. The CPU time also verges as one considers different numbers of random super-
scales linearly withJ. Figure 2 compares the TS-RWP positionsN,., and contrasts this with the convergence of the
method to the generalized Newton variational principlerate constant determined by considering the TSWPs ordered
(GNVP) calculations of Mielkeet al3” for J=6. One can see energetically, as in our earlier discussion of Fig. 2. Three
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130 ‘ - - tant to include these high states because they make a 30%
« J=O(TS-AWF) to 40% contribution to the total thermal rate constant at the
a0k e j:gggga_u;awe;)al.) | highest temperatures studied h§er‘éaple Il compares our
—— J=3(Mielke et al.) calculated thermal rate constants with the accurate GNVP
e e ol ones of Mielkeet al,®” as well as experimental resuftsThe

150 | agreement between the TS-RWP and GNVP results is quite
good, with the greatest error, 6%, in the TS-RWP results
arising at the lowest temperatufe=300 K. Note only four
(two per parity random superpositions were employed Jor
>10 for these results. Furthermore, it is important to empha-
size that the statistical errors in the total rate constant could
have been reduced by including all relevanstates in the
random superpositior's, and this is probably the optimal
” n 20 30 20 way of applying the random superposition idea to estimate a
1000K/T rate constant. We used a different approach — random su-
FIG. 3. The logarithmibase 10of J selected thermal rate constafusits of perpos!tlons for eac_h individual — _SO we COsl;|d also com-
e molecule L s~1) for D+H, for J=3, 6, and 9 calculated via the present Pare with thed specific results of Mielket al:
approach TS-RWP and the GNVP results of Mielket al. (Ref. 37. The results in Table 11l requiree400 real wave packet
propagations. We did not perform the extensive0 ISSWP
propagations necessary to determine the corresponding num-

different total angular momentum resultss9, 15, and 24 ber of propig_?tionshand actuatl)lcomputation\’;\\llr?;‘forrt] required
are displayed. While typicallM~40 (20 for each parity to convergek(T) with comparable accuracy. lle the num-

individual TSWP propagations are necessary to convergBer of asympt'ot'lc !nmal chan_n eI.s. below 1.6 e\/ S approxi-
each rate constant, after only a few propagations of the rarl! ately 4000, it is likely that S|gr1|f|cantly fewer |r1|t|al states
dom superpositions the result is clearly close, within certaiﬁ"’OUIOI neelgl to IlI)? propageg_ed n qrderftlc;_ obiam rteasongble
statistical error, to the correct, converged result. This is Clea?qcuracy.( ecafl Trom our discussion ot Fig. at we ob-
from Fig. 4 in how one sees that propagationdaf=4, 10, tained very good)=0 ISSWP results using seven of the ten

and 20 superpositions yield curves that are all quite close tgpPen channels foE=<1.1 eV, which is comparable to the

one another. The error bars are given for the case of avera umber of TSWPs usedHowever, we can be more confi-

ing over only four random superpositior{&rrors were esti- ent that the TS-RWP approach leads to significant compu-

mated by calculating the rate constant for a given randorrtnational savings per propagation owing to the smaller grids

superposition and calculating the average and variance a@—nd the use of just the real part of the wave packet. Further-

cordingly) In contrast, particularly at the higher tempera- MOre: the present example, a rigorous, three-dimensional cal-

tures, the convergence with respect to propagating TSWPs I%ulatlon including all relevani and Coriolis coupling, natu-

energetic ordefthe isolated pointsis less satisfactory. We rally leads to the consideration of Ia_rge numbers of TSW.PS'
should note that the scale of Fig. 4 hides the fact that thg)ften, reasonably accurate cun_1u|at|ve reaction probab_llltles
random superpositions do not converge very quickly at IOV\Flnd rate constf':mts ganoe obtqlqed based bndor possi-
temperatures when the actueselected rate constants are of bly some .partlculla_r fu_II or ngi'zty decoupled>0 resul,
much smaller magnitude. This is illustrated more clearly inCOUpled withJ sh|_ft|ng ideas.">*In such cases, far fewer
Table II, which corresponds to the results §5¢9 at selected TSWPs are required.
temperatures. One sees that e300 K result, even at the
level of 40 random superpositions, is in error by a factor of 3|V' CONCLUSIONS
in relation to the more converged result basedvba80 (40 We presented a “transition state-real wave packet”
for each parity energetically ordered TSWP propagations.(TS-RWB approach for obtaining the cumulative reaction
Table Il also includes comparison with the accurate GNVPprobability N(E) which combines Zhang and Light’s transi-
results of Mielkeet al®” We see that ouM=80 (40 per tion state wave packet methbdnd the real wave packet
parity) T=500 and 700 K results fod=9 are in excellent formalism of Gray and Balint-Kurti* Both these approaches
agreement with those of Mielket al,, and the 5% error of can offer significant computational reductions in the estima-
our M=80 (40 per parity result atT=300 K is consistent tion of cumulative reaction probabilities and the combined
with the difficulties previously noted in Sec. lllBand also  approach is expected to be particularly efficient. The imple-
the discussion of Fig. 3 aboyen converging the deep tun- mentation of the random superposition idea of Matzkies and
neling limit of N(E). Manthée? provides additional savings compared to summing
Next we present calculations of the full thermal rate con-over individually propagated wave packets. We illustrated
stant. In these calculations, in order to obtain reasonable athe approach by estimating the cumulative reaction probabil-
curacy at the lower temperatures, we individually propagatedty and thermal rate constants for thetbl, based on full
M=20 (10 per parity energetically ordered TSWPs for dimensional calculations including all relevant angular mo-
J=0-4, andM=40 (20 per parity TSWPs forJ=4-10. For menta. It is also important to emphasize that the efficiencies
J>10, we employed instead propagations Nf;=4—20 afforded by both the transition state wave packet idwad
(2—10 per parity random superpositionglt is very impor-  the random superposition idéamay be considerably im-

log(k)

-16.0

-17.0

-18.0
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FIG. 4. TheJ selective thermal rate constant fortBi,, in units of cn?
molecule * s™1. Comparison of TS-RWP propagation results based on di-
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sults based oM, random superpositionga) J=9, (b) J=15, (c) J=24.
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proved by using a more appropriate coordinate system thaguantitative comparisons. While still involving complex vec-
the one we used in our illustration, e.g., one that mimics, irtors, for example, it might be that Manthe and Miller’s reac-
the vicinity of the transition state, the transition state normation probability matrix approachmight be superior to the
coordinates. present approach if only a few energiEsare of interest.

Of course, as indicated in Sec. |, there are a variety of This approach, for each energy leads to a matrix eigen-
other approaches for obtaining(E), as well as also ap- value problem that must be solved, perhaps by iterative ma-
proaches for obtaining the rate constant without direct refertrix eigenvalue methods, for a certain number of eigenval-
ence toN(E). Depending on the information desired, theseues) If only a few temperatured,, are of interest, it might be
approaches might be less or more efficient than the approathat a flux correlation approach would be most efficiént.
outlined here. It is important to realize that all approachegThis approach involves propagation in complex time corre-
(including our own tend to be somewhat involved when sponding to a specific temperatyr&/e anticipate that the
problem sizes become so large that iterative linear algebraresent approach might be most appropriate when a wide
methods are required, and it is therefore difficult to makerange of energies and temperatures is of interest, and possi-
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APPENDIX

An alternative, more explicitly time-independent deriva-

bly when the problem size becomes so large that the use &on of an equation very similar to Eq18), is presented
just real vectors makes the problem more tractable. here. This derivation is more in the spirit of time-

There are also correlation function based approaches t#dependent wave packet ideds; although we outline at
the cumulative reaction probability:'®3? The approach of the end how the result can be viewed as a special case of a
Ref. 32, for example, is similar in spirit to the Zhang and more explicitly time-dependent argument similar to that of
Light’ (and thus our ownflux-based approach. It is interest- the main text.
ing to note that one could combine this correlation function ~ With f(E) =Es=asE+bg, Eqgs.(11) and(15) imply
approaqﬁ2 with a simple _identi_ty or “tricl_<” _for obta_ining Ni(E)=(27Tﬁ)za§>\<¢i(0)|5(Es—Hs)
correlation functions at time given certain information at
time t/2, as used in Refs. 49 and 50, to obtain an approach szoa(Es—Hs)M)i(O)). (AL)
that involves similar computational effort to the present TS-
RWP approactii.e., instead of halving the wave packet size Expand the two delta function operators in Chebyshev poly-
by utilizing just the real part as we have done, this wouldnomialsTy(Hs),
involve keeping complex wave packets but halving the o
propagatign time$. Of course, the present TS-RWP ap- S(Eq—Hg = c(EdTu(Hy), (A2)
proach still has more favorable computer memory require- k=0
ments, and, in our view, is a little simpler to implement. with
However, it would be very interesting if the real wave packet
ideas could be implemented within such correlation ap- 2
proaches, since then even greater computational savings Cu(Es) = ;[1—
mightbe achieved. It is not too difficult to cast the equations

%o
2

+1 dx
J s ME0TX)

J1—x2

of Ref. 32 in real wave packet terms by invoking Ef4) 2 So] T(Eo)
and using relations such as H@) or the related identity Eq. =—{ 1- % s 5. (A3)
(A11) of the Appendix. In fact, an approach similar to that of m V1-Eg

our Appendix, coupled with certain Qhebyghev pOIVnomialEquation(Al) then becomes
identities such a3, = —Ty,+2T,T,, might yield both sav-
ings in terms of wave packet size and propagation time. We Ni(E)=(2wﬁ)2a§)\<Di|FSO|Di>, (A4)
are currently investigating such possibilities.
While we demonstrated the feasibility of TS-Rwp Where
method with a nontrivial example, we intend to apply the w
scheme to more complicated problems in the future for D= ¢ (E-)(QMW+iP®). (A5)
which the advantages of the TS-RWP should be more pro- k=0

nounced relative to ISSWP formulations. The Q™ and P satisfy Chebyshev separate recursions

with Q(¥=Re¢(0), QM=HQ® generatingQ¥, and
PO =Im #(0), PP=HP® generating P! . Including

TABLE I1ll. Comparison of TS-RWP, GNVRRef. 37 and experimental dampingA of grid points in the reactant and product regions,

(Ref. 48 rate constants in units of chmolecule * s, Numbers in brack-

ets indicate powers of ten. these recursions are just like E®),
k k— k
T(K) TS-RWP GNVP Experiment Q¥ D=A[—AQ P+2HQM],
300 2.62-16)+.01 2.76-16) 2.96—16) pkr= Al - APK D4 2H PR, (A6)
500 3.13-14)+.04 3.17-14 317114
700 2.90-13=.07 2.92-13 3.071-13 i.e., damped forward Chebyshev recursions as in the work of
900 1.09-12)*.04 1.1¢-12) 1.26-12) Mandelshtam and TaylGf.
1100 2.68-12)*+.12 2.72-12 3.39-12)

SinceF given by Eq.(12) is imaginary in the position
representation, anN(E) is real, Eq.(A4) may be written

1300 4.99-12)+.25 5.32-12) 7.17-12
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Ni(E)=(27rh)2a§)\i[<ReDi|Fs [ImD;) The approach outlined in the main text is slightly more
0 general, however, since E(L8) is a particular case of Eq.
—(Im Di|FSO|ReDi)]. (A7)  (17) which could be applied with, for exampl&(H)=H, or

possibly some other functional mappingtéf It is also pos-
Because RB; and ImD; are real basis functions, the imagi- sible to arrive at Eq(A10) as a special case of a more gen-
nary antisymmetric propefty of the flux operator implies eral expression derived from the time-dependent arguments
(ImD;|Fs |Re Dj)=—(ReDj|Fs [ImD;), so that EQ.(A7)  of the text. One simply repeats all the analysis of Sec. Il B

becomes but instead of using the key relation E@), which allows
o 2 o complex wave packets(t) to be replaced by their real parts
N;(E)=(2mh)“ash2i(ReD;|Fg [Im D;). (A8) in Fourier integrals, one uses

Finally, utilizing the explicit form of the flux operator, Eq.
(12), one may show that

(fa= | ate gy

(277}1)2 2 J +o0 .
N;(E)= a;\| ( ReD; a—slm D; =4f dtcog fet/A)[Q(t)+iP(1)]. (A11)
s s=s; 0
P Q(t) andP(t) are the real parts of the forward time evolu-
—( —ReD;|ImD; , (A9)  tion, according to the modified Schifinger equation, Eq.
s s (4), of wave packets with initial condition®(0)=Re¢(0)

0 andP(0)=1m ¢(0). Notice that in both cases the initial con-

where, as with Eq(18), the inner products are over all vari- dition is real. As with Eq(6), it must be thal (fg) is one-
ables except the transition state coordinate which is helgided. If the quantum dynamics is generated by [&j.it is
fixed ats=s,. More explicitly, in terms of the Chebyshev then not too difficult to recover an expression equivalent to

iterates, EQ(A9) is Eqg. (AL10).
(2mh)® , - 0l s 9 o
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